If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+10d+8=0
a = 3; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·3·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*3}=\frac{-12}{6} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*3}=\frac{-8}{6} =-1+1/3 $
| -2c^2-9c-2=-3c^2 | | -2c^2-9c-2=0 | | 20=50-y | | 1=-4n+3(6+2n)-19 | | 17=85+t | | X+.16x=27000 | | 93=e-30 | | 8x+9=10x-7 | | 2/3=x51 | | 21=p-112 | | -36=2(2-8n) | | 27=12x-x*x*x | | 3(4n-5=)-17 | | 15w^2+6w-1=0 | | 14=x^2+7x+6 | | M=h-15 | | -2/5u=-14 | | 68=59+w | | 11=48-d | | x^2+1.80x-0.13986=0 | | 103=88+j | | W2+4w=60 | | 72/100x=5 | | 6(1+3n)=-8(2n+5)-5 | | -80=77+q | | -20z=18z+2(-20z+13) | | 200-y=148 | | 5(6-2n)=70 | | 4(m+4)=6m | | -18v+3(v-1)=2(11v-20) | | 64=-y+203 | | 8n+3(3n+5)-49=0 |